Cambridge International Examinations

Cambridge International Advanced Subsidiary and Advanced Level

CHEMISTRY

9701/42
Paper 4 A Level Structured Questions
MARK SCHEME
Maximum Mark: 100

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the May/June 2017 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Question	Answer	Marks
1 (a)(i)	increases down the group	1
	radius / size of (cat)ion/ M^{2+} increases	1
	less polarisation / distortion of anion / carbonate ion/ $\mathrm{CO}_{3}{ }^{2-}$	1
1(a)(ii)	Na^{+}has smaller ionic charge and larger ionic radii OR the charge density of the $\mathbf{N a}^{+}$is lower	1
1 (b)(i)	$2 \mathrm{KHCO}_{3} \longrightarrow \mathrm{~K}_{2} \mathrm{CO}_{3}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$	1
1(b)(ii)	NaHCO_{3} because Na^{+}is smaller OR charge density Na^{+}is larger	1
1 (c)(i)	$\begin{aligned} \mathrm{LE} & =\Delta H_{\mathrm{f}}-2\left(\Delta H_{\mathrm{at}}+\mathrm{IE}\right)-1 / 2(\mathrm{O}=\mathrm{O})-\left(\mathrm{EA}_{1}+\mathrm{EA}_{2}\right) \\ & =-361-2(89)-2(418)-496 / 2-(-141+798) \\ & =-\mathbf{2 2 8 0}\left(\mathrm{kJ} \mathrm{~mol}^{-1}\right) \text { correct answer scores }[3] \end{aligned}$	$\begin{array}{ll} & \\ 1 & 3 \\ 1 & \\ 1 & \end{array}$
1(c)(ii)	LE of $\mathrm{Na}_{2} \mathrm{O}$ will be more negative AND as $\mathrm{Na}^{(+)}$is smaller / larger charge density / smaller radii AND so greater attraction (between the ions) OR (ionic) bonds will be stronger	1
		10

Question	Answer	Marks
2(d)(i)	either $S_{N} 1$ or $S_{N} 2$ mechanism	
	C-Cldipole AND C-Cl curly arrow	1
	intermediate cation OR 5-valent transition state (charge essential)	1
	I^{-}with lone pair AND other curly arrow	1
2(d)(ii)	If $\mathrm{S}_{\mathrm{N}} 1$ in 2(d)(i) mixture of / two optical isomers will be formed, AND the intermediate can be formed by the I^{-}approaching from top or bottom plane If $S_{N} 2$ in 2(d)(i) one optical isomer AND attack always from fixed direction / opposite side	1

Question	Answer			Marks
2(e)(i)	4 peaks			1
2(e)(ii)				$1+1$
	number of peaks $=2$	number of peaks $=3$		1
			Total:	18

Question	Answer			Marks
3(a)				
			four shared pairs: $\mathrm{S}=\mathrm{O}$ and $2 \times \mathrm{S}-\mathrm{Cl}$	1
			all (9) lone pairs	1
3(b)(i)	$\mathrm{NaOH}+\mathrm{HCl} \longrightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$			1
	$2 \mathrm{NaOH}+\mathrm{SO}_{2} \longrightarrow \mathrm{Na}_{2} \mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{O}$			1

Question	Answer		Marks
3(b)(ii)	$\begin{aligned} & \text { moles (at start) }=0.5 \times 60 / 1000=3 \times 10^{-2} \mathrm{AND} \\ & \text { moles }(\text { at end })=0.5 \times 10.8 / 1000=5.4 \times 10^{-3} \end{aligned}$		1
	moles reacted $\left(=(30-5.4) \times 10^{-3}=\right) 2.5 \times 10^{-2}$ correct ans. scores [2]		1
3(b)(iii)	moles of $\mathrm{RCO}_{2} \mathrm{H}=2.46 \times 10^{-2} / 3=8.2-8.3 \times 10^{-3} \mathrm{~mole}$		1
3(b)(iv)	$M_{\mathrm{r}}=1.00 /\left(8.2 \times 10^{-3}\right)=121.95(=122)$		1
$3(\mathrm{~b})(\mathrm{v})$	$\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{2} \mathrm{OR} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2} \mathrm{H}$		1
3(c)(i)	$\mathrm{LiA}_{2} \mathrm{H}_{4}$		1
3(c)(ii)			3
3(c)(iii)	angelic acid: geometrical OR cis-trans compound T: optical		1
		Total:	14

Question	Answer		Marks
4(a)(i)	$M_{r}=52+6 \times 18+3 \times 35.5=266.5$		1
4(a)(ii)	$1.00 \mathrm{~g}=1 / 266.5$ OR 3.75×10^{-3} moles (of complex in 1 g) for $\mathbf{A}, \mathrm{n}=2$ AND $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{Cl} .2 \mathrm{H}_{2} \mathrm{O}$ for B, n=1 AND $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{C} l\right] \mathrm{Cl}_{2} . \mathrm{H}_{2} \mathrm{O}$ for $\mathbf{C}, \mathrm{n}=0$; AND $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{3}$		2
4(b)(i)	Geometric(al) / cis-trans		1
4(b)(ii)	 isomer 1 isomer 2		1
4(b)(iii)	isomer 2 AND dipoles do not cancel $\mathrm{OR} \mathrm{CN}^{-}$are on the same side of the molecule		1
		Total:	6

Question	Answer					Marks
5(a)(i)	bidentate: (a species that) forms two dative bonds / donates two lone pairs					1
	ligand: a species that uses a lone pair to form a dative bond to a metal atom / metal ion					1
5(a)(ii)					each structure [1] $\times 3$	3
5(b)(i)	$K_{\text {stab1 }}=\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}{ }^{2+}\right] /\left[\mathrm{Cu}^{2+}\right]\left[\mathrm{NH}_{3}\right]^{4}$					1
	$K_{\text {stab2 }}=\left[\mathrm{Cu}(\mathrm{en})_{2}{ }^{2+}\right] /\left[\mathrm{Cu}^{2+}\right][\mathrm{en}]^{2}$					1
	$\mathrm{mol}^{-4} \mathrm{dm}^{12}$ AND mol ${ }^{-2} \mathrm{dm}^{6}$					1
5(b)(ii)	$K_{\text {eq3 }}=K_{\text {stab2 }} / K_{\text {stab } 1}$					1
5(b)(iii)	$K_{\text {eq } 3}=K_{\text {stab } 2} / K_{\text {stab } 1}=4.4(2) \times 10^{6}$					1
	$\mathrm{mol}^{2} \mathrm{dm}^{-6}$					1
5(c)(i)	($\Delta S_{\text {eq } 1}$ is negative as) more / 5 moles of reactants are forming (one mole of) the complex OR ($\Delta S_{\text {eq2 }}$ is positive as) fewer / 3 moles of reactants are forming (one mole of) the complex					1
5(c)(ii)	$\Delta G_{\text {eq2 }}=-100-298 \times 40 / 1000$ OR $\Delta G=\Delta H-T \Delta S$ $=-112$ or $-111.9\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ correct answer [2]					$\begin{array}{ll} & 2 \\ 1 & \\ 1 & \end{array}$

Question	Answer	
5(c)(iii)	Since $\left(\Delta G_{\text {eq2 }}\right)$ is more negative (than $\left.\Delta G_{\text {eq1 }}\right)$ AND equilibrium 2 is more feasible	Marks
$5(\mathrm{c})$ (iv)	$\Delta H_{(3)}=-8\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$	$\mathbf{1}$
$5(\mathrm{c})(\mathrm{v})$	ligand exchange / replacement/substitution / displacement	$\mathbf{1}$
		$\mathbf{1}$

Question	Answer	Marks
6(a)(i)	the lower/smaller the $\mathrm{p} K_{\mathrm{a}}$, the stronger the acid	1
6(a)(ii)	$\mathrm{p} K_{\mathrm{a}}=-\log \left(K_{\mathrm{a}}\right)$ or $\mathrm{p} K_{\mathrm{a}}=-\lg \left(K_{\mathrm{a}}\right)$ or $K_{\mathrm{a}}=10^{-\mathrm{pka}}$	1
6(a)(iii)	(stronger than ethanoic acid because) Cl is electron-withdrawing	1
	and so stabilises the RCO_{2}^{-}anion / conjugate base or weakens $\mathrm{O}-\mathrm{H}$ bond (so H^{+}is more easily released)	1
6(b)(i)	$\begin{aligned} & \mathrm{NH}_{3}^{+} \mathrm{CH}_{2} \mathrm{CO}_{2}^{-} \longrightarrow \mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2}^{-}+\mathrm{H}^{+} \\ & \text {OR } \mathrm{NH}_{3}^{+} \mathrm{CH}_{2} \mathrm{CO}_{2}^{-}+\mathrm{H}_{2} \mathrm{O} \xrightarrow{2} \mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2}^{-}+\mathrm{H}_{3} \mathrm{O}^{+} \end{aligned}$	1
6(b)(ii)	$\begin{aligned} & K_{a}=10^{-9.87}=1.35 \times 10^{-10} \\ & {\left[\mathrm{H}^{+}\right]=\sqrt{ }\left(K_{\mathrm{a}} \cdot \mathrm{c}\right)=3.67 \times 10^{-6}} \end{aligned}$	1
	$\mathrm{pH}=5.4$ (5.43-5.44) min 2sf	1

Question	Answer	Marks
$6(\mathrm{~b})$ (iii)	curve starts at 5.4 and continuous	1
	vertical portion (end point) at vol added $=10.0 \mathrm{~cm}^{3}$	1
	finishes at pH $=12.5$ at $20 \mathrm{~cm}^{3}$ (and does not increase in pH$)$	1
		10

Question	Answer				Marks
7(a)	W	X	Y	Z	5
	acyl chloride / COC/	methyl ketone / CH3CO group aryl chloride	aldehyde / CHO chloro(alkane) / RCl	Alkene / C=C phenol $/ \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$ aryl chloride	
	0-1 [0]; 2 [1]; 3 [2]; 4 [3]; 5 [4]; 6-8 [5]				

Question

Question					Answer	Marks
$8(\mathrm{a})(\mathrm{i})$	step 1	electrophilic substitution	ignore acylation			
	step 2	nucleophilic addition	1			
$8(\mathrm{a})(\mathrm{ii)}$	hydrolysis	1				

Question	Answer		Marks
8(a)(iii)	step 1 ClCH 2 CHO	(allow Br, I for Cl)	1
	AlCl_{3}		1
	step $2 \mathrm{HCN}+\mathrm{NaCN}$		1
	step 3 heat in $\mathrm{H}_{3} \mathrm{O}^{+} /$heat $\mathrm{H}^{+}(\mathrm{aq})$		1
	step $5 \quad \mathrm{NH}_{3}$ under pressure (+ heat) or heat NH_{3} in a sealed tube		1
8(a)(iv)	with $\mathrm{NaOH}(\mathrm{aq})$		$1+1$
			1
	with $\mathrm{Br}_{2}(\mathrm{aq})$ or		1
8(b)(i)	\mathbf{P} is tyr		1
	tyr is 2- AND it is small / has a small Mr		1

Question	Answer	Marks
8(b)(ii)	(dipeptide /phe-tyr) 2- is about double the $M_{r} /$ mass of (phe) 1 OR mass / charge ratios are about the same for each (for dipeptide / phe-tyr and phe)	1
		15

